0.2 C
Rosendal
fredag, november 22, 2024

Buy now

spot_img
spot_img

Skal finne ut hvilke pasienter som har risiko for diabetes

Det finnes veldig mange varianter i genene våre. Noen kjenner vi effekten av, men de aller fleste har ukjent betydning.

– For diabetes vet vi at noen varianter av et bestemt gen, HNF1A, fører til at personen får MODY-diabetes, en arvelig diabetestype. Andre varianter i samme gen er imidlertid kun knyttet til økt risiko for type 2 diabetes eller de er rett og slett normale varianter som ikke gir økt risiko for sykdom, forteller professor Pål Njølstad.

Han har bidratt i en stor studie ved Klinisk institutt 2 hvor de har analysert effekten av rundt 100 ulike varianter av HNF1A.

Verdens mest solgte hjertestarter

– De ulike mutasjonene produserer ulike typer av proteiner. I laboratoriet har vi uttrykt proteinet genvarianten lager og ved hjelp av ulike metoder undersøkt hvordan proteinene virker. Binder proteinet seg til et annet DNA? Skrur det av og på andre gener? Er det lokalisert i cellene der det skal være eller er det andre steder?

Ved hjelp av kunstig intelligens har de deretter laget algoritmer som analyserer de tenkelige effektene av proteinene.

– Det er brukt maskinlæring til å lage et system som klassifiserer genvariantene fra normalvarianter til sykdomsfremkallende, sier Njølstad. Studien ble nettopp publisert i tidsskriftet American Journal of Human Genetics.

Yoga Pilates

Gjør det mulig å få vite tidlig om du har økt risiko

Njølstad forklarer at det tidligere har vært vanlig å tenke at sjeldne genvarianter er sykdomsfremkallende. Slik er det oftest ikke. Det er ofte svært vanskelig å vite om akkurat den genvarianten du bærer på gir en økt risiko for sykdom eller ikke. Systemet han og kollegaene har laget gjør det enklere:

– Ved hjelp av denne teknologien kan man gi et godt estimat på om det er en normal genvariant man besitter eller en variant som gir økt risiko, forteller professoren.

Lille Anne QCPR

Genmateriale fra 15 000 pasienter

Genmaterialer fra over 15 000 pasienter inngår i studien. Forskerne har brukt registerdata fra Oxford i England og Norge for å bekrefte funnene sine:

– Det er aldri blitt gjort en like omfattende studie på genvarianter og proteiner innen diabetesfeltet. Sammenslåingen av data fra så mange ulike registre er en enormt stor jobb, sier Njølstad.

spot_img

Related Articles

annonsespot_img

Latest Articles

-annonse-spot_img